-
hive相关概念详解--架构、读写文件机制、数据存储
- 网站名称:hive相关概念详解--架构、读写文件机制、数据存储
- 网站分类:技术文章
- 收录时间:2025-09-22 16:41
- 网站地址:
“hive相关概念详解--架构、读写文件机制、数据存储” 网站介绍
一、架构及组件介绍
1、hive整体架构图
2、Hive组件
用户接口
包括 CLI、JDBC/ODBC、WebGUI。
CLI(command line interface)为shell命令行
Hive中的Thrift服务器允许外部客户端通过网络与Hive进行交互,类似于JDBC或ODBC协议
WebGUI是通过浏览器访问Hive
元数据存储
通常是存储在关系数据库如 mysql/derby中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
Driver驱动程序
包括语法解析器、计划编译器、优化器、执行器
完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成
生成的查询计划存储在 HDFS 中,并在随后有执行引擎调用执行
执行引擎
Hive本身并不直接处理数据文件,是通过执行引擎处理
当下Hive支持MapReduce、Tez、Spark3种执行引擎
3、Hive数据模型(Data Model)
用来描述数据、组织数据和对数据进行操作
Hive的数据模型类似于RDBMS库表结构,此外还有自己特有模型
Hive中的数据可以在粒度级别上分为三类:Table 表、Partition分区、Bucket 分桶。
1)、Databases
Hive作为一个数据仓库,包含数据库(Schema),每个数据库下面有各自的表组成。默认数据库default。
Hive的数据都是存储在HDFS上的,默认有一个根目录,在hive-site.xml中,由参数
hive.metastore.warehouse.dir指定。默认值为/user/hive/warehouse。
因此,Hive中的数据库在HDFS上的存储路径为:${
hive.metastore.warehouse.dir}/databasename.db
比如,名为test的数据库存储路径为:
/user/hive/warehouse/test.db
2)、Tables
Hive表与关系数据库中的表相同。Hive中的表所对应的数据是存储在Hadoop的文件系统中,而表相关的元数据是存储在RDBMS中。
在Hadoop中,数据通常保存在HDFS中,尽管它可以保存在任何Hadoop文件系统中,包括本地文件系统或S3。
Hive有两种类型的表:
Managed Table内部表、托管表
External Table外部表
创建表时,默是内部表。Hive中的表的数据在HDFS上的存储路径为:${
hive.metastore.warehouse.dir}
/databasename.db/tablename
比如,test的数据库下t_user表存储路径为:
/user/hive/warehouse/test.db/t_user
3)、Partitions
Partition分区是hive的一种优化手段表。
分区是指根据分区列(例如“日期day”)的值将表划分为不同分区。这样可以更快地对指定分区数据进行查询。
分区在存储层面上的表现是table表目录下以子文件夹形式存在
一个文件夹表示一个分区。子文件命名标准:分区列=分区值
Hive还支持分区下继续创建分区,所谓的多重分区。
4)、Buckets
Bucket分桶表是hive的一种优化手段表。
分桶是指根据表中字段(例如“编号ID”)的值,经过hash计算规则将数据文件划分成指定的若干个小文件。
二、Hive读写文件机制
1、SerDe作用
SerDe是Serializer、Deserializer的简称,目的是用于序列化和反序列化。序列化是对象转化为字节码的过程;而反序列化是字节码转换为对象的过程。
Hive使用SerDe(和FileFormat)读取和写入行对象。
# 读过程
HDFS files --> InputFileFormat --> <key,value> --> Deserializer(反序列化) --> Row Object
# 写过程
Row Object --> serializer(反序列化) --> <key,value> --> OutputFileFormat --> HDFS files
# 需要注意的是,“key”部分在读取时会被忽略,而在写入时key始终是常数。基本上行对象存储在“value”中。
# 通过desc formatted tablename查看表的相关SerDe信息,SerDe默认(
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe)如下:
0: jdbc:hive2://server4:10000> desc formatted t_user;
INFO : Compiling command(queryId=alanchan_20221017153821_c8ac2142-aacf-479c-a8f2-e040f2f791cb): desc formatted t_user
INFO : Concurrency mode is disabled, not creating a lock manager
INFO : Semantic Analysis Completed (retrial = false)
INFO : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:col_name, type:string, comment:from deserializer), FieldSchema(name:data_type, type:string, comment:from deserializer), FieldSchema(name:comment, type:string, comment:from deserializer)], properties:null)
INFO : Completed compiling command(queryId=alanchan_20221017153821_c8ac2142-aacf-479c-a8f2-e040f2f791cb); Time taken: 0.024 seconds
INFO : Concurrency mode is disabled, not creating a lock manager
INFO : Executing command(queryId=alanchan_20221017153821_c8ac2142-aacf-479c-a8f2-e040f2f791cb): desc formatted t_user
INFO : Starting task [Stage-0:DDL] in serial mode
INFO : Completed executing command(queryId=alanchan_20221017153821_c8ac2142-aacf-479c-a8f2-e040f2f791cb); Time taken: 0.037 seconds
INFO : OK
INFO : Concurrency mode is disabled, not creating a lock manager
+-------------------------------+----------------------------------------------------+----------------------------------------------------+
| col_name | data_type | comment |
+-------------------------------+----------------------------------------------------+----------------------------------------------------+
| # col_name | data_type | comment |
| id | int | |
| name | varchar(255) | |
| age | int | |
| city | varchar(255) | |
| | NULL | NULL |
| # Detailed Table Information | NULL | NULL |
| Database: | test | NULL |
| OwnerType: | USER | NULL |
| Owner: | alanchan | NULL |
| CreateTime: | Mon Oct 17 14:47:08 CST 2022 | NULL |
| LastAccessTime: | UNKNOWN | NULL |
| Retention: | 0 | NULL |
| Location: | hdfs://HadoopHAcluster/user/hive/warehouse/test.db/t_user | NULL |
| Table Type: | MANAGED_TABLE | NULL |
| Table Parameters: | NULL | NULL |
| | COLUMN_STATS_ACCURATE | {\"BASIC_STATS\":\"true\",\"COLUMN_STATS\":{\"age\":\"true\",\"city\":\"true\",\"id\":\"true\",\"name\":\"true\"}} |
| | bucketing_version | 2 |
| | numFiles | 0 |
| | numRows | 0 |
| | rawDataSize | 0 |
| | totalSize | 0 |
| | transient_lastDdlTime | 1665989228 |
| | NULL | NULL |
| # Storage Information | NULL | NULL |
| SerDe Library: | org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe | NULL |
| InputFormat: | org.apache.hadoop.mapred.TextInputFormat | NULL |
| OutputFormat: | org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat | NULL |
| Compressed: | No | NULL |
| Num Buckets: | -1 | NULL |
| Bucket Columns: | [] | NULL |
| Sort Columns: | [] | NULL |
| Storage Desc Params: | NULL | NULL |
| | field.delim | , |
| | serialization.format | , |
+-------------------------------+----------------------------------------------------+----------------------------------------------------+
35 rows selected (0.081 seconds)
2、Hive读写文件流程
读过程
HDFS files --> InputFileFormat --> <key,value> --> Deserializer(反序列化) --> Row Object
Hive读取文件机制
首先调用InputFormat(默认TextInputFormat),返回一条一条kv键值对记录(默认是一行对应一条记录)。
然后调用SerDe(默认LazySimpleSerDe)的Deserializer,将一条记录中的value根据分隔符切分为各个字段。
写过程
Row Object --> serializer(反序列化) --> <key,value> --> OutputFileFormat --> HDFS files
Hive写文件机制
将Row写入文件时,首先调用SerDe(默认LazySimpleSerDe)的Serializer将对象转换成字节序列
然后调用OutputFormat将数据写入HDFS文件中。
3、SerDe相关语法
其中ROW FORMAT是语法关键字,DELIMITED和SERDE二选其一。
如果使用delimited表示使用默认的LazySimpleSerDe类来处理数据。如果数据文件格式比较特殊可以使用ROW FORMAT SERDE serde_name指定其他的Serde类来处理数据,甚至支持用户自定义SerDe类。
1)、LazySimpleSerDe分隔符指定
LazySimpleSerDe是Hive默认的序列化类,包含4种子语法,分别用于指定字段之间、集合元素之间、map映射 kv之间、换行的分隔符号。在建表的时候可以根据数据的特点灵活搭配使用。
2)、默认分隔符
hive建表时如果没有row format语法。此时字段之间默认的分割符是’\001’,是一种特殊的字符,使用的是ascii编码的值。
在vim编辑器中,连续按下Ctrl+v/Ctrl+a即可输入’\001’ ,显示^A
在一些文本编辑器中将以SOH的形式显示:
4、Hive数据存储路径
1)、默认存储路径
Hive表默认存储路径是由${HIVE_HOME}/conf/hive-site.xml配置文件的
hive.metastore.warehouse.dir属性指定。默认值是:/user/hive/warehouse。
在该路径下,文件将根据所属的库、表,有规律的存储在对应的文件夹下。
2)、指定存储路径
在Hive建表的时候,可以通过location语法来更改数据在HDFS上的存储路径,使得建表加载数据更加灵活方便。
语法:LOCATION ‘<hdfs_location>’。
对于已经生成好的数据文件,使用location指定路径将会很方便。
以上,介绍了hive的整体架构、相关组件、数据模型等,同时也介绍 了hive的读写文件流程、机制等相关内容。
更多相关网站
- 在实际操作过程中如何避免出现SQL注入漏洞
- MyBatis-Plus码之重器 lambda 表达式使用指南,开发效率瞬间提升80%
- 第三篇|Spark SQL编程指南_spark sql语句
- Mybatis入门看这一篇就够了_mybatis教程视频
- 在 MySQL 中使用 UUID 作为主键的存在问题及如何优化?
- 好程序员大数据培训分享Hive的静态分区与动态分区
- 盘点JPA中的骚操作_jpa ql
- 大雨暴雨!考生注意,昆明将迎强降雨,最强时段在→
- 大数据Hadoop之——数据仓库Hive_hadoop数据仓库实战肖睿
- 福建新画卷,把福建成绩“画”给你看!
- hive无法insert数据_hive with as insert
- hive存储过程_hive存储过程setenv
- 大数据调度平台 Airflow(六):Airflow Operators 及案例
- 从0到1详解Apache Hive_apache-hive-2.1.1-bin.tar.gz
- 记一次生产环境jvm内存泄漏的排查
- 为什么很多人不愿意用hibernate了?
- 数仓|HQL隐藏错误的坑,你遇到过吗?
- 最近发表
- 标签列表
-
- mydisktest_v298 (35)
- sql 日期比较 (33)
- document.appendchild (35)
- 头像打包下载 (35)
- 梦幻诛仙表情包 (36)
- java面试宝典2019pdf (26)
- disk++ (30)
- 加密与解密第四版pdf (29)
- iteye (26)
- centos7.4下载 (32)
- intouch2014r2sp1永久授权 (33)
- jdk1.8.0_191下载 (27)
- axure9注册码 (30)
- 兔兔工程量计算软件下载 (27)
- ccproxy破解版 (31)
- aida64模板 (28)
- engine=innodb (33)
- shiro jwt (28)
- segoe ui是什么字体 (27)
- head first java电子版 (32)
- clickhouse中文文档 (28)
- jdk-8u181-linux-x64.tar.gz (32)
- 计算机网络自顶向下pdf (34)
- -dfile.encoding=utf-8 (33)
- jdk1.9下载 (32)